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Abstract—A quietstanding index is developed for tracking the
postural sway of healthy and diabetic adults over a range of ages.
Several postural sway features are combined into a single compos-
ite feature C that increases with age a. Sway features are ranked
based on the r2 -values of their linear regression models, and the
composite feature is a weighted sum of selected sway features with
optimal weighting coefficients determined using principal compo-
nent analysis. A performance index based on both reliability and
sensitivity is used to determine the optimal number of features. The
features used to form C include power and distance metrics. The
quiet standing index is a scalar that compares the composite fea-
ture C to a linear regression model f(a) using C ′(a) = C/f(a).
For a motionless subject, C ′ = 0, and when the composite feature
exactly matches the healthy control (HC) model, C ′ = 1. Values
of C ′ � 1 represent excessive postural sway and may indicate
impaired postural control. Diabetic neurologically intact subjects,
nondiabetic peripheral neuropathy subjects (PN), and diabetic PN
subjects (DPN) were evaluated. The quiet standing indexes of the
PN and DPN groups showed statistically significant increases over
the HC group. Changes in the quiet standing index over time may
be useful in identifying people with impaired balance who may be
at an increased risk of falling.

Index Terms—Diabetes, peripheral neuropathy (PN), postural
sway metrics, quiet standing index.

I. INTRODUCTION

THE CONTROL of balance is a key aspect of mobility over
the human lifespan from young children learning to stand
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and walk to elderly adults who may require the assistance of
a cane or a walker. Postural control consists of both postural
steadiness associated with the ability to maintain balance dur-
ing quiet standing and postural stability that is associated with
the response to applied external stimuli and volitional postu-
ral movements [1]. The postural control system makes use of
information from the visual, vestibular, and somatosensory sys-
tems [2]. There are many factors that potentially affect the pos-
tural control system and may lead to an increased risk of falling.
These include health or medical conditions such as diabetes, pe-
ripheral neuropathy (PN), stroke, multiple sclerosis, Parkinson’s
disease, cerebral palsy, and obesity [3]–[5], [15], [23], [28], [29].
One of the most important determinants for the risk of falling is
age [1], [6], [7], [10], [17]. As humans age, they experience re-
duced tactile and joint position sensitivity and increased reaction
time [8], as well as reduced muscle mass [4].

Balance is achieved when the subject’s center of gravity
(COG) remains within the base of support. COG is the vertical
projection of the center of mass onto the base of support. It is
a whole body characteristic that is difficult to measure directly,
so typically the center of pressure (COP) is used instead. COP
is the location of the vertical ground reaction force on the sur-
face upon which the subject stands. COP movements are used
to control the horizontal displacements of the center of mass.
In general, the COP varies about the COG, but with higher am-
plitude and higher frequency content [25]. Using a single force
plate, it is the net COP from both feet that is measured [9]. Over
an extended period of time of quiet stance, the average of the
COP must equal the average of the COG [26].

During quiet standing, humans invariably sway to main-
tain balance, and this motion is measured using the anterior–
posterior (AP) and the medial–lateral (ML) components of the
net COP. Different control mechanisms and different muscle
groups are used to control AP and ML motion [25]. There are
numerous metrics or features of quiet standing sway that have
been measured and statistically analyzed including time-based,
time- and frequency-based (hybrid), and frequency-based char-
acteristics [7], [10], [11]. The relative sensitivity, variation, and
correlation of 13 groups of features was investigated in [1], and
this list of features was meant to be representative rather than
exhaustive. More recently, the reliability of 36 COP features
was analyzed in [12]. Differences in the quiet standing sway
of healthy and disabled individuals have been reported using
a variety of sway metrics [5], [18], [23], [28], [29]. With so
many quiet standing sway features under consideration, there is
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no clear consensus as to which single metric or subset is most
appropriate for describing the steadiness of young, old, healthy,
and unhealthy individuals.

This paper proposes a simple way to combine a set of quiet
standing postural sway features into a single composite fea-
ture C that accounts for variation with age a. The features are
sorted based on the r2-values of their linear regression mod-
els. A weighted sum of selected sway features is used to form
the composite feature with optimal weighting coefficients ob-
tained using principal component analysis (PCA). Once a com-
posite feature is defined, a linear regression model f(a) for
healthy individuals can be created. The composite feature for
an individual then can be compared with the healthy control
(HC) model using a quiet standing index C ′(a) = C/f(a).
The quiet standing index takes on the value C ′(a) = 0 when
the subject is perfectly motionless (a theoretical state only ap-
proached asymptotically). If the subject has a composite fea-
ture that exactly matches the HC model, then C ′(a) = 1. Val-
ues of C ′(a) satisfying C ′(a) � 1 indicate excessive postu-
ral sway and correspond to reduced steadiness. A combined
reliability and sensitivity performance metric (described in
Section III) is used to determine the optimal number of features
for the composite feature C. Using prediction interval bands, the
composite feature and quiet standing index of individuals can be
compared with the HC group. An increase in the quiet standing
index of an individual over time may indicate that the subject
is beginning to experience a reduction in steadiness. The quiet
standing indexes of diabetic and nondiabetic subjects, and sub-
jects with and without PN, were computed. For PN subjects and
diabetic PN subjects (DPN), statistically significant increases
were found in comparison with the HC group.

II. METHOD

A. Subjects and Testing Procedures

The initial set of subjects consisted of 108 adults, ranging in
age from 19 through 77 years. Thirty eight subjects were diag-
nosed by their primary care physicians with early mild type II
diabetes. Ten of these diabetic subjects (diabetic neurologically
intact (DNI) group) had normal peripheral nerve conduction ve-
locity (NCV) tests, and the remaining 28 diabetic subjects were
seen to have PN (DPN group). Twenty two nondiabetic subjects
were shown to have PN (PN group). Thirty nine subjects, who
were nondiabetic and neurological intact, constituted the HC
group. The remaining nine subjects were not classified, and not
included in this study because their minimum nerve conduction
velocities fell within ±2% of the NCV thresholds for a finding
of PN. The inclusion of a small gap provided a clear border be-
tween the PN and non-PN groups. The physical characteristics
of the groups of subjects under investigation are summarized in
Table I. The number of males and females is almost identical
for the HC and DNI groups, but the PN and DPN groups have
an increased number of males.

An area plot of the age distributions of the subjects in Table I
is shown in Fig. 1, where it is clear that the three pathologi-
cal groups tend to consist of older subjects. A majority of the
subjects were recruited from the Veterans Administration (VA)

TABLE I
MEAN PHYSICAL CHARACTERISTICS OF THE SUBJECTS

Fig. 1. Age distributions of the 39 subjects in the HC group, the 10 subjects
in the DNI group, the 22 subjects in the PN group, and the 28 subjects in the
DPN group. The values plotted at age 55 represent the number of subjects in
the decade 50–60.

Medical Centers (MCs), Shreveport, LA, and Pittsburgh, PA
(Highland Drive). The remaining subjects were recruited from
the community by advertising at Louisiana Tech University and
in the Shreveport area. The recruiting, screening, testing, and
informed consent procedures were reviewed and approved by
the appropriate Institutional Review Boards.

All the subjects who were recruited for this investigation un-
derwent visual, vestibular, auditory, musculoskeletal, and cog-
nitive screening to maximize the liklihood that they had no un-
diagnosed conditions that may have affected their balance [13].
Subjects with respiratory dysfunction, cardiac condition, cen-
tral nervous system disorder, musculoskeletal disorder, lower
extremity amputation, severe arthritis, history of repeated falls,
or who were currently taking medication to prevent dizziness
were excluded.

The individuals with diabetes had mild type II diabetes as de-
termined by their primary care physicians. All diabetic subjects
had been diagnosed with diabetes within the past 10 years. They
were using diet or oral medication to manage blood sugar levels,
and they all reported stable blood sugar levels and acceptable
hemoglobin A1C levels at the time of their testing.

Clinical nerve conduction tests on the lower extremities were
performed by a VAMC neurology technician under the supervi-
sion of a neurologist. The norms used to classify subjects were
taken from the Neurology Department at the Pittsburgh VAMC.
NCV tests were performed on the tibeal, peroneal, and sural
nerves of both legs, and the thresholds used were 41, 44, and
34 m/s, respectively. Each NCV was normalized by its threshold
value, and the overall NCV score X was set to the minimum
of the normalized velocities. Subjects were classified as be-
longing to the PN group when X ≤ 0.98, the NI group when
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X ≥ 1.02, and the±2% gap when 0.98 < X < 1.02. It was felt
that including a gap would give a more reliable classification in
comparison with classifying every subject as either NI or PN,
even when the NCV score fell right on the boundary.

The experimental data were obtained using the SLIP–FALLS
system, a sliding linear investigative platform for analyzing
lower limb stability [14]. This is a computer-controlled air-
bearing mobile platform instrumented with a force plate to pre-
cisely measure COP [14]. For this study, the platform was held
motionless, and the subjects stood barefoot with their arms at
their sides. Throughout the data collection, the back of both
heels were aligned in the frontal plane, with feet splayed out at
natural stance. In the ML direction, the subjects were asked to
maintain their normal width stance. In order to minimize the ef-
fects of visual and audio cues, the subjects were blindfolded, and
headphones were used to provide masking noise (70-dB SPL)
and instructions. The use of the eyes-closed condition during
quiet stance did not appear to have any detrimental effects on
the elderly or disabled subjects.

B. Quiet Standing Features

Quiet standing COP time-series measurements were taken for
each subject. Here, xAP(k) and xML(k) denote the kth samples
of the AP and ML components of the COP, respectively. The
means of xAP(k) and xML(k) have been removed as in [1]. Let
fs denote the sampling frequency, and N the total number of
samples. For this investigation, the initial sampling frequency of
1000 Hz was higher than that needed for the COP measurements,
so the time-series measurements were downsampled by a factor
of 10 to yield fs = 100 Hz. There were three quiet standing
trials, each of duration 20 s, taken 30 min to 1 h apart. The first
5 s of each trial were removed to avoid potential startup tran-
sients [20]. After removing the means, the data segments were
joined using cubic splines to yield a single segment consisting
of N = 4500 samples or 45 s. This involved adjusting 4 points
out of 4500 using cubic spline interpolation to avoid abrupt tran-
sitions at the segment boundaries. Since less than 0.09% of the
points were adjusted to fit the segments together, this appeared
to have negligible effects on the computed features. A more
general procedure for fitting noisy segments of data together
using cubic smoothing splines is described in [27]. By con-
structing one long segment, instead of averaging three shorter
segments, the resolution of the power density spectrum was
improved.

For convenience, a plot of xAP versus xML will be referred to
as a stabilogram [1], also called a statokinesigram [26]. There
are numerous metrics or features that can be used to character-
ize a stabilogram. A list of the 11 features considered in this
case is shown in Table II. The features in Table II are a subset
of features defined in [1] and analyzed in [2]. All of the fea-
tures in [1] start out by first removing the means of xAP and
xML so that only the variations from the means are analyzed.
To reduce the number of equations in the following feature
definitions, let x denote xAP or xML , as appropriate. The first
two distance measures characterizing sway displacement are as

TABLE II
QUIET STANDING POSTURAL SWAY FEATURES OF 37 HEALTHY ADULTS, AGES

19 THROUGH 77

follows:

mean dist X =
1
N

N∑
k=1

|x(k)| (1)

rms dist X =

[
1
N

N∑
k=1

x2(k)

]1/2

. (2)

The mean velocity characterizes the average speed of the
sway and is computed by dividing the total distance traveled by
the duration of the experimental run. Three area measures have
been proposed to approximate the area of the stabilogram. One
measure, area_cc, represents the area of the 95% confidence
circle, a circle that is expected to enclose approximately 95% of
the points on the stabilogram path. Another measure, area_ce,
is somewhat more general in that it uses the 95% bivariate
confidence ellipse. Computation of these two area measures
is described in [1]. A third area measure estimates the area
enclosed per unit time. It is constructed by summing the areas
of the triangles formed by successive pairs of points on the sway
path, using the sway centroid as the third vertex [16].

The power measures of postural sway are based on the
power density spectrum Sx(i) = |X(i)|2/N , where X(i) =
DFT{x(k)} is the discrete Fourier transform. The average
power is the average of the power density spectrum

ave power X =
1
N

N∑
i=1

Sx(i). (3)

Each of the four groups of subjects in Table I was tested for
outliers using the means of the features in Table II. Subjects
who averaged more than 3.5 standard deviations from the mean
were classified as outliers and removed. This resulted in two
HC subjects, with mean deviations of +3.6 and +4.0, being
removed. There were no outliers among the other three groups.

The set of features in Table II was selected using the following
criteria. First, the feature value should go to zero when the sub-
ject is perfectly motionless (a theoretical state only approached
asymptotically). Second, the feature value should increase when
the size of the stabilogram increases. As a stabilogram grows
in size, the COP trajectory approaches the boundary of the base
of support. Finally, the feature value should depend on all of
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TABLE III
FEATURES USED FOR COMPOSITE FEATURE C

the points in the stabilogram path in the sense that varying any
point should vary the value. The first criterion eliminates fractal
dimension and principal angle features because they are not well
defined when the stabilogram is reduced to a point. The second
criterion eliminates features based on the shape of the power
density spectrum because increasing the size of the stabilogram
does not change, for example, the frequency centroid or the fre-
quency dispersion. The third criterion eliminates range features
because only the extreme points contribute to the range. It is also
possible to have vector forms of the features listed in Table II,
such as the mean vector distance and the rms vector distance.
These features were eliminated based on redundancy arguments
because AP and ML are the components of the position vector.
By restricting the features under consideration to the features
listed in Table II, the quiet standing index has a very simple
physical interpretation that is easily understood and applied.

C. Feature Models

Table II was constructed using the HC group. Each feature
was normalized by its maximum value Mk , and then a linear
regression model was constructed by regarding the feature to be
a function of the subject’s age a. Here, mk and bk are the slope
and intercept, respectively, for feature k.

fk (a) = mka + bk . (4)

The rk -values in Table II are the r-values of the linear regres-
sion models, where r2

k denotes the fraction of the total variance
that is accounted for by the linear regression model, and the sign
of rk is the sign of mk . The Rank column in Table II is obtained
by sorting the features based on decreasing values of r2

k . The
fact that the rk -values are quite small is an indication that the
slopes are very small in comparison with the variance present in
the data. A positive rk indicates that the feature tends to increase
with age. The results in Table II appear to be consistent with
those reported in [1], where a comparison of 20 healthy young
adults with 20 healthy elderly adults showed that, for all fea-
tures for which the two groups showed significant differences,
the mean value increased for the older group. The candidate
features in Table II will eventually be reduced to the top three
features listed in Table III. The justification for selecting three
features is based on a combined reliability and sensitivity per-
formance metric that is described in Section III.

D. Composite Feature

The selected features in Table III can be combined into a
single composite feature. Let gk denote the kth selected feature
for 1 ≤ k ≤ q. A composite feature is obtained by forming the

Fig. 2. Composite feature C versus the age a for the subjects in the HC
group. The solid line is the linear regression HC model f (a). The shaded region
represents the 5%–95% prediction intervals for the composite features of the
HC Group. The solid marker is moved left for illustration purposes.

following weighted average of q features:

C =
q∑

k=1

wkgk . (5)

The weighting coefficients are determined using a two-step
process. First, each feature gk is normalized by dividing by its
maximum value Mk . Normalization is useful because other-
wise the composite value C can be more sensitive to features
with large means and variances. Next, a q × 1 weight vector
v is computed using PCA [24]. The weight vector w in (5) is
then computed as wk = vk/Mk for 1 ≤ k ≤ q. The composite
feature weights wk for the top three features are summarized
in Table III. Since PCA weights are used in (5), the composite
feature is the first principal component of the data generated
by the features in Table III. The composite feature C accounts
for 96.9% of the total variance of the data using the features in
Table III.

By using a single composite feature, one can develop a test
for steadiness. To see this, let ai and Ci denote the age and
composite feature, respectively, for subject i. Next, let f(a) be
the linear regression model that fits the composite feature data
(ai, Ci) for 1 ≤ i ≤ n

f(a) = ma + b. (6)

The composite features Ci and linear regression model f(a)
for the HC group in Table I are shown in Fig. 2. Also shown are
prediction intervals1 for the HC data computed using a bootstrap
method, modified to account for linearly increasing standard
deviation of the residuals [19]. The shaded area represents the
area between the 5th and the 95th percentile. The heavy solid
line is the composite feature linear regression model for the HC

1Whereas confidence intervals predict a range for a parameter of the data,
prediction intervals are meant to describe the dataset itself. A 95% prediction
interval is such that one would expect that 95% of the data points will fall within
that interval.
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group using the features in Table III

f(a) = 0.0027a + 0.4584. (7)

The r-value for the composite feature model, r = 0.2214, is
relatively small because the slope is only m = 0.0027. However,
the value of f(a) does increase by 35.3% as age ranges from 20
to 80 years. From the spread in the prediction interval bands, it
is evident that there is considerable variation in the composite
feature data plotted in Fig. 2. Also, note that as the subjects
grow older, there appears to be more variation in the composite
feature. The prediction intervals are important for properly in-
terpreting the value of the composite feature. To illustrate this
(using an extreme case), the data point for a 77-year-old subject
with a composite feature of C = 0.98 was shifted left and re-
plotted as a solid marker associated with a 25-year-old. Clearly,
the value of C = 0.98 lies far above the 95th percentile when it
is attached to a younger individual, but it is at the 90th percentile
when evaluated at a = 77 years.

As explained in this section (and amplified in Section IV),
we have endeavored to show the thought process behind our
definition of a composite feature. Although the weights shown
in Table III might be altered by choosing a different (and/or
larger) sample set, we are confident that these weights will
provide a reasonable way to average the various measures of
quiet standing postural sway. As such, we define the composite
SLIP–FALLS sway statistic (CSSS), as the C-value computed
using these weights, with composite SLIP–FALLS sway model
f(a). If other researchers are interested in doing an “apples to
apples” comparison with their own subjects, they should use the
weights in Table III.

E. Quiet Standing Index

Given the HC model, the quiet standing characteristics of
subjects can be compared to one another in two ways. The most
direct approach is to use the composite feature deviation

∆C(a) = C − f(a). (8)

The prediction interval bands give an indication of how far
above or below the HC model a composite feature falls. An
alternative approach is to normalize the composite feature by
the HC model to produce the following quiet standing index:

C ′(a) =
C

f(a)
. (9)

Two values of C ′(a) have simple interpretations. The lower
bound C ′(a) = 0 occurs in the limit when the subject exhibits no
sway whatsoever. If the composite feature of a subject exactly
matches the HC model, then C ′(a) = 1. A plot of the quiet
standing indexes for the HC group is shown in Fig. 3. The mean
of the quiet standing index, by construction, is µ = 1 and the
standard deviation is σ = 0.29.

For the quiet standing index, values of C ′(a) satisfying
C ′(a) � 1 indicate excessive sway. When the amplitude of the
sway is sufficiently large, the COP of the subject begins to ap-
proach the boundary of the base of support. Consequently, very

Fig. 3. Quiet standing index C ′(a) versus age a for the subjects in the HC
group. The solid horizontal line corresponds to the linear regression HC model.
The shaded region represents the 5%–95% prediction intervals for the quiet
standing indexes of the HC group.

Fig. 4. Composite features versus the data duration τ using random subjects
from the HC, DNI, PN, and DPN groups.

large values of the quiet standing index can be associated with
a reduction in steadiness.

III. RESULTS

A. Data Duration

The effects of the quiet standing data duration on the value and
the reliability of several individual postural sway features have
been investigated [12], [21], [22]. These studies used data dura-
tions ranging from 10 to 120 s with up to eight trials conducted
either consecutively or over two days. The reported results for
the optimal number and length of epochs ranged from one epoch
of 20–30 s [21] to up to seven epochs of 60 s depending on the
particular sway feature used [12]. In view of these findings, it
is useful to examine how sensitive the composite feature is to
the duration of the data used to compute it. Fig. 4 shows a plot
of the composite features of four subjects, selected at random
from each group, as a function of the duration τ of the data used
to compute C. The dotted vertical lines show the boundaries
between the three epochs. For very short durations (τ ≤ 20),
there can be considerable fluctuation in the C-values. However,
for longer durations (τ ≥ 25), the composite features begin to
stabilize and are approximately flat. Consequently, to measure
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Fig. 5. Composite feature C versus age a for the 10 subjects in the diabetic
(DNI) group, the 22 subjects in the PN group, and the 28 subjects in the DPN
group. The shaded regions represent the 5%–95% prediction intervals for the
composite features of the HC group.

Fig. 6. Quiet standing index C ′ versus age a for the 10 subjects in the diabetic
(DNI) group, the 22 subjects in the PN group, and the 28 subjects in the DPN
group. The shaded regions represent the 5%–95% prediction intervals for the
quiet standing indexes of the HC group.

the composite feature, at least two epochs should be used. The
fact that two to three epochs appear to suffice is perhaps a con-
sequence of the fact that the composite feature C is based on a
weighted average of several normalized features rather than on
a single feature.

B. Subjects With Diabetes and PN

Next, it is of interest to examine the composite features and
quiet standing indexes of subjects who have been diagnosed
with health conditions such as diabetes and/or PN. The second
group in Table I consists of DNI subjects. The composite fea-
tures and the quiet standing indexes of the ten DNI subjects are
shown in Figs. 5 and 6, respectively. In this case, a few of the
subjects exhibit an elevated quite standing index, but the results
are roughly similar to those of the HC group. The mean quiet
standing index for the DNI group was µ = 1.51 and the standard
deviation was σ = 0.75. Three subjects out of ten fell above the

Fig. 7. Composite feature C versus the number of component features q for
the 37 subjects in the HC group. The comb-like structure appearing in the
interval 2 ≤ q ≤ 4 represents a region where the relative ranking of subjects
based on C does not change. For q > 4, an outlier type subject is present.

95th percentile band of the HC group, with one subject well
above with a quiet standing index of C ′(a) = 3.33.

The third group of subjects in Table I includes individuals
who have PN but are not diabetic. The composite features and
the quiet standing indexes of the 22 PN subjects are also shown
in Figs. 5 and 6, respectively. Of the 22 PN subjects, 7 exhibited
quiet standing indexes above the 95th percentile of the HC group
with the largest being C ′(a) = 4.62. The mean quiet standing
index for this group was µ = 1.52 and the standard deviation
was σ = 0.92. It is evident that there is somewhat more variation
in C ′(a) within the PN group.

The fourth group of subjects in Table I consists of individuals
who are both diabetic and have PN (DPN). The composite fea-
tures and the quiet standing indexes of the 28 DPN subjects are
again shown in Figs. 5 and 6, respectively. Of the 28 subjects,
9 had quiet standing indexes above the 95th percentile of the
HC group with the largest being C ′(a) = 3.82. For the DPN
subjects, the mean of the quiet standing index was µ = 1.52
and the standard deviation was σ = 0.71.

C. Feature Set Selection

The feature set used for the composite feature C was ar-
rived at using a two-step procedure. First, the features were
sorted according to decreasing r2-values of their linear regres-
sion models. In this way, the effects of aging were taken into
account. Next, the number of features q was chosen to ensure
that the composite feature C is both reliable in terms of adding
and subtracting features, and sensitive in terms of being able
to distinguish between groups with different health characteris-
tics. Let C(i, q) denote the composite feature of subject i using
the first q features from the sorted list. As the number of fea-
tures q increases, the ranking or relative position of subjects
based on their C-values should not change or at least should
exhibit minimal change. A range of values for q over which the
change appears to be minimal can be determined by plotting
the composite features C(i, q) for the subjects in the HC group,
as shown in Fig. 7. A careful viewing of this dense family of
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curves reveals a comb-like structure in the range 2 ≤ q ≤ 4. The
appearance of parallel lines means that for these subjects, the
values of C relative to one another do not change. Although
Fig. 7 contains considerable information, it can be difficult to
analyze visually. The information in Fig. 7 can be distilled to a
single variable by examining how the ordering of the subjects
changes with q. Since there are n subjects and h features, C is
an n × h matrix. Let [D, d] = sort(C) be a sorted version of
C using the MATLAB sort function. Here, each column of D
contains the corresponding column of C, sorted according to
increasing values of the composite feature. The qth column of
the matrix d contains integers in the range 1 − n, which shows
the ordering of the subjects based on their composite features
when q features are used. In order to determine an optimal value
for q, consider how the ordering of the subjects changes as the
number of features changes. A significant change in the order-
ing of the subjects when a single feature is added or removed
would suggest that the composite feature might not be reliable
because its value would be highly sensitive to the addition or
removal of a single feature. Let i(q) be the number of elements
in the qth column of d that change as the number of features
is increased from q to q + 1. Then, the percentage of subjects
whose ranking does not change is as follows, where n is the
number of subjects:

I(q) = 100
[
1 − i(q)

n

]
. (10)

Note that I(q) ranges from 0% to 100%, with 100 corre-
sponding to the case when the ordering of the subjects based
on C does not change as the number of features is increased
from q to q + 1. The measure in (10) represents the reliability of
C over the interval [q, q + 1]. In order to develop a reliability
measure corresponding to the number of features q, one can take
the average of I(q − 1) and I(q).

R(q) =
I(q − 1) + I(q)

2
%, 1 < q < h. (11)

Note that R(q) takes into account the effects of either adding
or removing a feature from C. At the end point q = 1, no features
can be removed, so R(1) = I(1), and when q = h, no features
can be added, so R(h) = I(h).

It is also useful to develop a quiet standing index that is sen-
sitive in the sense that it is able to distinguish between different
groups of individuals who may have health conditions that af-
fect their balance. A one-way analysis of variance (ANOVA)
was performed on the four groups. Given the null hypothesis
that there is no statistically significant difference between the
means of the groups, the computed p-value specifies the prob-
ability that the null hypothesis is true. Let P (q) be the p-value
using q features to form the quiet standing index. Then, the
number of features at which the quiet standing index is most
sensitive corresponds to the minimum value of P (q).

The two characteristics, reliability and sensitivity, can be
combined into a single performance metric that depends on
the number of features q

V (q) =
(

Pmin

Rmax

)
R(q)
P (q)

, 1 ≤ q ≤ h. (12)

Fig. 8. Performance index V (q) that takes into account the reliability of adding
or subtracting features and the sensitivity in distinguishing between different
groups of subjects.

Fig. 9. Multiple comparison of the quiet standing indexes of the four groups
of subjects. There are statistically significant increases in the means of the PN
and DPN groups in comparison with the HC group since the 95% confidence
intervals do not overlap.

Here, Rmax = 70.3% is the maximum value achieved by the
reliability measure, while Pmin = 0.0038 is the minimum value
achieved by the sensitivity measure. If R(q) and P (q) were to
achieve their extrema at the same number of features, then the
peak value of the combined performance metric V (q) would be
one. A plot of the performance metric V (q) is shown in Fig. 8.
There is a peak at V (3) = 0.90, thus confirming how the three
features listed in Table III were chosen. Observe from Fig. 8
that when three features are used, the performance is 8.5 times
higher than the performance obtained using a single feature.

D. Ability to Discriminate

A one-way ANOVA of the quiet standing indexes of the four
groups was performed in order to test the ability of C ′ to discrim-
inate between the groups. It should be noted (see Fig. 1) that the
HC group contains more young subjects than the other groups.
The results indicated that the quiet standing index did detect
a statistically significant difference between the four groups of
subjects with a p-value of p = 0.0038. A multiple comparison
was then made to see how the means of the groups differed from
one another with the results shown graphically in Fig. 9.

Both the PN subjects and the DPN subjects showed statisti-
cally significant increases in the quiet standing index in com-
parison with the HC group where it can be seen in Fig. 9 that the
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TABLE IV
QUIET STANDING INDEX CHARACTERISTICS OF THE GROUPS OF SUBJECTS

95% confidence intervals do not overlap. For the DNI subjects,
the increase in the mean of the quiet standing index was not
statistically significant. The absence of a statistically significant
difference between the DNI and HC groups is consistent with
results reported in [29]. The fact that PN and DPN subjects
appeared less steady makes sense in terms of the underlying
postural control system. Low nerve conduction velocities im-
ply more delay in the feedback control system used to maintain
balance. It is well known that as delay is increased in a linear
feedback control system, the stability margin decreases.

A summary of the quiet standing index characteristics of the
four groups is shown in Table IV. For each group, the increase
in the mean quiet standing index was influenced by individuals
whose quiet standing indexes fell above the 95th percentile of
the HC group. The last column in Table IV shows the percentage
of subjects within each group whose C ′-values were above the
95th percentile of the HC group.

IV. DISCUSSION

There are several novel characteristics that set the composite
feature and quiet standing index apart from other postural sway
metrics that have been proposed. The first is the technique used
to sort the individual sway features based on their sensitivity to
age using the r2-values of their linear regression models. An
alternative way to select features was introduced in [22] and
applied in [5]. Here, 14 postural sway features commonly used
in clinical practice were analyzed using PCA. For 19 Parkin-
son’s disease subjects in the levodopa off state, it was found
that the first four principal components (weighted sums of the
14 features) were sufficient to account for 94.7% of the total
variation in the data. The individual sway features with the most
significant contributions to each of the principal components
were then identified using a process described in [22]. A similar
analysis was applied to the Parkinson’s disease subjects in the
levodopa on state where it was found that the first three principal
components (different from the off state) account for 93.0% of
the total variation in the data. Using this technique, significant
groups of sway features were identified, and individual features
were ordered or ranked within each group. This is in contrast
to the proposed approach where all features are initially ranked
with respect to their sensitivity to age using the r2-values of
their linear regression models.

The second unique characteristic of the composite feature C
is the determination of an optimal number of individual sway
features. For each fixed number of features q for 1 ≤ q ≤ h,
a PCA was used to compute optimal weights. The composite

feature C corresponds to the first principal component and it
accounts for the maximum variance in the data. For each q, the
subjects were sorted according to increasing values of C. To
determine the optimal number of features, the sensitivity of the
ordering to changes in the number of features was computed.
This led to a reliability measure R(q) that specifies the percent-
age of subjects whose position in the sorted list does not change
when a feature is added or removed. Thus, R(q) represents the
reliability of using C to rank the subjects. The sensitivity of
the quiet standing index C ′(a) in being able to distinguish be-
tween groups of subjects with different health characteristics
was also examined by computing the p-value P (q) using a one-
way ANOVA. These two characteristics, reliability and sensitiv-
ity, were then combined into a single performance metric V (q)
whose peak value was used to determine the optimal number of
features. The optimum of q = 3 features achieved a reliability of
R(3) = 70.3% and a sensitivity of P (3) = 0.0038. The num-
ber of individual features in [5] was fixed at q = 14 and the
number of principal components was allowed to vary until at
least 90% of the variance was accounted for. For the composite
feature C, the number of principal components is fixed at one,
but the number of individual features that contribute to it was
allowed to vary, and it was found that the optimal number from
the sorted list was q = 3. The composite feature C accounts
for 96.9% of the total variance in the data associated with the
selected features.

A third novel characteristic of the quiet standing index is
that it explicitly incorporates the effects of aging. Using the
composite feature C, a linear regression model was developed
for HC subjects that shows how the composite feature varies with
age. Normalization of the composite feature by the HC model
then yields the quiet standing index C ′(a), a postural sway
metric that takes the age of the subject into account. Prediction
interval bands that show the percentiles of HC subjects who are
expected to have C- and C ′-values below a given threshold were
also computed. These prediction interval bands can be used in a
fashion similar to the clinical growth charts that physicians use
to chart the development of children as their height and weight
change with age as they mature.

The three features that contribute to the composite feature C
include one power feature (ave_power_AP) and two distance
features (mean_dist_AP and rms_dist_AP). The average power
feature uses the information contained in the power density
spectrum, and it does so with a metric that goes to zero when
the subject is motionless and increases in value as the size of
the stabilogram increases. Using both mean distance and rms
distance provides for applying different importance values for
outlier type motion. Note that the performance in Fig. 8 is almost
is high when four features are used. Including the fourth feature,
mean_vel_ML, adds not only another type of feature (velocity)
but also another direction (ML). However, when four features
are used, the PCA weights are v = [0.592, 0.526, 0.609, 0.042].
Here, the fourth weight is more than a full order of mag-
nitude smaller than the other weights, and this suggests that
mean_vel_ML does not contribute significantly to C. The fifth
feature in the sorted list is area_cc, and with it, all four groups
of features from Table II would be represented. However, it is
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clear from Fig. 8 that when five features are used to compute
C, the performance decreases to a value of V (5) = 0.131 that
is only marginally better than the V (1) = 0.106 achieved using
a single feature. When three features are used, the performance
is 8.5 times higher than the performance obtained using a single
feature.

In most of the studies of postural sway, analysis of quiet
standing for an individual has been viewed in relation to a larger
sample group. In a clinical setting, there is only one sample—
the person being tested. Interpretation of the COP measurement
requires an understanding of the “normal range,” where a num-
ber of studies indicate that this normal should vary with age. In
particular, we note that a sway value that might be “healthy” for
an elderly patient could be viewed as “excessive” for a young
adult (e.g., see the dashed line in Fig. 2). Similarly, our model
attempts to distinguish between the normal growth of sway due
to aging and the excessive growth of sway that might indicate
a true postural instability. Our methodology provides a means
for evaluation of these single sample points without requiring a
direct comparison group.

The composite feature and the quiet standing index may be
useful clinical tools to assess a balance dysfunction when work-
ing with individuals with balance disorders. The quiet standing
index combines several different postural sway characteristics
into a single scalar score C ′ that is easily understood by both
clinicians and patients. Fig. 9 shows that this score is able to
distinguish between adults with balance impairment and adults
without balance deficits. The quiet standing index may also be
more sensitive to change after rehabilitation than other mea-
sures. However, further research is necessary to evaluate that
hypothesis. Applying the quiet standing index to other patient
populations would also be an area for further research. As noted
previously, we assert that the weighting coefficients in Table III
and the model in (7) provide a reasoned way to express a com-
posite feature, and researchers/clinicians interested in applying
this technique should use these values in computing the CSSS.
Note from Fig. 1 that most of the HC data came from subjects
in the age range from 45 to 65 years. It is acknowledged that the
HC model might benefit from additional data from young and
middle aged subjects. Similarly the prediction intervals (which
help to describe what is normal, marginal, or outlier) could
also benefit from additional data on healthy individuals. Predic-
tion intervals based on the bootstrap method for the composite
feature C and the quiet standing index C ′ are summarized in
Tables V and VI, respectively [19]. We expect to refine the curves
defined in Tables V and VI as more data become available.

One of the useful characteristics of the power and distance
metrics used to form the composite feature is that they can be
computed in real time. The features in Table III assume that the
means of the COP data have been removed. The mean itself
can be computed in real time using a recursive formulation. By
using a real-time formulation of C ′, a subject can be evaluated
using a single quiet standing trial, blind folded and lasting up to
60 s perhaps. The measured value of C ′ can be displayed, and
it should stabilize once sufficient time has elapsed.

The examined subjects included DNI, PN, and DPN groups.
In each case, the percentage of subjects with C ′-values above

TABLE V
BOOTSTRAP PREDICTION INTERVALS FOR THE COMPOSITE FEATURE C USING

THE HC SUBJECTS

TABLE VI
BOOTSTRAP PREDICTION INTERVALS FOR THE QUIET STANDING INDEX C ′

USING THE HC SUBJECTS

the 95th percentile band of the HC group was approximately
six times that of the HC group. Using a one-way ANOVA, the
quiet standing indexes of the PN and DPN groups showed sta-
tistically significant increases over the HC group. The smaller
DNI group did not show a statistically significant increase at the
95% confidence level, a finding that is consistent with results
reported in [29]. Besides comparing groups with different phys-
ical characteristics, the quiet standing index also can be used to
compare individual subjects within a group. Another potentially
useful way to apply the quiet standing index is to monitor how
C ′ varies for an individual over time. By measuring the quiet
standing index of an individual every year or every few years,
and computing a trend line, a potentially troublesome change
in the quiet standing index might be detected. If the measured
C ′ > 1 and the trend is sharply upward, then this may indicate
the beginning of a reduction in steadiness and an increased risk
of falling.

All the subjects considered here underwent lower limb
clinical nerve conduction studies as part of the study protocol.
Thus, their neurological status was known. Future papers will
apply this technique to additional more than 90 subjects (many
in the 18- to 35-year-old range) who did not have NCV tests
done. We also plan to use additional (repeat) observations from
many of the subjects in the present paper. An aggregate of
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approximately 6000 s of quiet standing data was considered
here. An additional aggregate of 15 000 s of data is being
analyzed to further validate this approach.
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